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The quest for speed

How fast can one multiply two n×n matrices?

• Standard multiplication: O(n3) operations.

• Strassen’s algorithm: O(n2.81) operations.
• ...
• Coppersmith and Winograd’s algorithm: O(n2.38)

operations.

• Is O(n2) achievable?
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Why should we care?

Complexity of matrix multiplication = complexity of
“almost all” matrix problems:

• solving linear systems,
• evaluating determinants,
• LU factorization,
• many more.

See P. Bürgisser, M. Clausen, M. A. Shokrollahi
Algebraic complexity theory.
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Strassen’s algorithm

Volker Strassen

Gaussian elimination

is not optimal. Numer.

Mathematik [1969].

Main idea:
• Multiplication by recursively

partitioning into smaller
blocks.

• To be faster than O(n3),
this needs a method to
multiply small matrices
(order k) using o(k3)
multiplications.
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Strassen

[
A11 A12

A21 A22

]
×

[
B11 B12

B21 B22

]
requires only

7 multiplications:

M1 := (A11 + A22)(B11 + B22)

M2 := (A21 + A22)B11

M3 := A11(B12 − B22)

M4 := A22(B21 − B11)

M5 := (A11 + A12)B22

M6 := (A21 − A11)(B11 + B12)

M7 := (A12 − A22)(B21 + B22).
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Strassen

Then

[
A11 A12

A21 A22

]
×

[
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
,

where C11 := M1 + M4 − M5 + M7

C12 := M3 + M5

C21 := M2 + M4

C22 := M1 − M2 + M3 + M6.

Applied recursively, this yields running time

O(nlog2 7) ≈ O(n2.8).
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Coppersmith and Winograd

Don Coppersmith Shmuel Winograd
Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation [1990].

Used a thm on dense sets of integers containing no three
terms in arithmetic progression (R. Salem & D. C. Spencer
[1942]) to get an algorithm with running time ≈ O(n2.376).
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Group-theoretic approach

Chris Umans Henry Cohn
A group-theoretic approach to matrix multiplication, FOCS
Proceedings [2003].

Proposed embedding into group algebra to be
combined with recursive partitioning.
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Why group algebras?

Multiplying two polynomials has complexity
O(n log n) instead of O(n2) by embedding
coefficients into C[G] where G is a finite
cyclic group of order N ≥ 2n, via the map

p 7→ {p(w) : w = exp(2πki/N)}k=0,...,N−1.

embed

into C[G]
→

convolve

using FFT
→

extract

from C[G]
.

The same can be done with matrix products,
via the map A 7→

∑
x,y A(x, y)x−1y. The group

G must have special properties.
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The algorithm

• Embed A, B in group algebra
• Perform FFT
• Reorganize results into new matrices
• Multiply new matrices recursively
• Reorganize results into new matrices
• Perform Inverse FFT
• Extract C = AB from group algebra
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Properties required

• For unambiguous embedding into C[G] there
must be three subgroups H1, H2, H3 with the
triple product property :

h1h2h3 = 1, hi ∈ Hi =⇒ h1 = h2 = h3 = 1

(can be generalized to other subsets of G).
• For the resulting algorithm to be faster than

O(n3), we must beat the sum of the cubes:

|H1| |H2| |H3| >
∑

j d3
j

(dj are the character degrees of G).
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Wedderburn’s theorem

Theorem. The group algebra of a finite group G
decomposes as the direct product

C[G] ∼= Cd1×d1 × · · · × Cdk×dk

of matrix algebras of orders d1, . . ., dk. These orders
are the character degrees of G, or the dimensions of
its irreducible representations.
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Beating the sum of the cubes

Balázs Szegedy Henry Cohn Chris Umans Bobby Kleinberg

Group-theoretic algorithms for matrix multiplication,
FOCS Proceedings [2005].

Found groups with subsets beating the sum of
the cubes and satisfying the triple product property.

Press coverage: SIAM News [Nov 2005] by Sara Robinson.
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Error analysis

Jim Demmel Ioana Dumitriu Olga Holtz Bobby Kleinberg

Fast matrix multiplication is stable, ArXiv Math.NA/0603207
[2006].

Main question: Do you get the right answer in the
presence of roundoff? To answer, need error analysis
for a large class of recursive matrix multiplication
algorithms.
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Method

Forward error analysis in the spirit of

D. Bini and G. Lotti Stability of fast algorithms for matrix
multiplication, Numer. Mathematik [1980/81].

What was missing:

• More general roundoff assumptions
• Wider scope:

nonstationary algorithms
algorithms with pre- and post- processing
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Recursive matmul algorithms

aka Bilinear noncommutative algorithms

• Stationary partitioning algorithms: at each step,
split matrices into the same number k2 of square
blocks.

• Non-stationary partitioning algorithms: the number
of blocks may vary at each step.

• Partitioning may be combined with pre- and
post-processing, both linear maps that introduce
roundoff errors.
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Error bounds

In all cases, the error bounds have the form

‖Ccomp − C‖ ≤ cndε‖A‖ · ‖B‖ + O(ε2),

where c, d are modest constants,
ε machine precision,
n order of A, B, C = AB,

Ccomp computed value of C.

Cf. with error bound for n3-algorithm:

|Ccomp − C| ≤ cnε|A| · |B| + O(ε2).
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Group-theoretic algorithms

• Embed A, B in group algebra (exact)
• Perform FFT (roundoff)
• Reorganize results into new matrices (exact)
• Multiply new matrices recursively (roundoff)
• Reorganize results into new matrices (exact)
• Perform Inverse FFT (roundoff)
• Extract C = AB from group algebra (exact)
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Semi-direct product, wreath product

If H is any group and Q is a group which acts (on the
left) by automorphisms of H, with q · h denoting the
action of q ∈ Q on h ∈ H, then the semidirect
product H o Q is the set of ordered pairs (h, q) with
the multiplication law

(h1, q1)(h2, q2) = (h1(q1 · h2), q1q2).

If H is any group, S is any finite set, and Q is a group
with a left action on S, the wreath product H o Q is the
semidirect product (HS) o Q where Q acts on the
direct product of |S| copies of H by permuting the
coordinates according to the action of Q on S.
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Running example, I

Consider the set S = {0, 1} and a two-element group
Q whose non-identity element acts on S by swapping
0 and 1. Let H be the group (ZZ/16)3. An element of
HS is an ordered pair of elements of H:(

x00 x01 x02

x10 x11 x12

)
.

An element of H o Q is an ordered pair (X, q) where
X is a matrix as above, and q = ±1. Example:

(X, −1)

·(Y, −1)
=




 x00 + y10 x01 + y11 x02 + y12

x10 + y00 x11 + y01 x12 + y02


 , 1



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Triple product property

If S, T are subsets of a group G, let Q(S, T ) denote
their right quotient set:

Q(S, T ) := {st−1 : s ∈ S, t ∈ T},

Q(S) := Q(S, S).

Definition. If H is a group and X, Y, Z are three
subsets, we say X, Y, Z satisfy the triple product
property if, for all qx ∈ Q(X), qy ∈ Q(Y ),
qz ∈ Q(Z), the condition qxqyqz = 1 implies
qx = qy = qz = 1.
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Simultaneous triple product property

If {(Xi, Yi, Zi) : i ∈ I} is a collection of ordered
triples of subsets of H, we say that this collection
satisfies the simultaneous triple product property
(STPP) if, for all i, j, k ∈ I and all qx ∈ Q(Xi, Xj),
qy ∈ Q(Yj, Yk), qz ∈ Q(Zk, Zi), the condition
qxqyqz = 1 implies qx=qy=qz=1 and i=j=k.

Lemma If a group H has subsets {Xi, Yi, Zi}1≤i≤n

satisfying the simultaneous triple product property,
then for every element hπ in H o Symn there is at
most one way to represent hπ as a quotient
(xσ)−1yτ such that x ∈

∏n
i=1 Xi, y ∈

∏n
i=1 Yi,

σ, τ ∈ Symn .
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Running example, II

In our running example, the group H is (ZZ/16ZZ)3.
Consider the following three subgroups of H.

X := (ZZ/16ZZ) × {0} × {0}

Y := {0} × (ZZ/16ZZ) × {0}

Z := {0} × {0} × (ZZ/16ZZ)

Then X, Y, Z satisfy the triple product property: if qx ∈

Q(X), qy ∈ Q(Y ), qz ∈ Q(Z), and qx+qy+qz = 0,

then qx = qy = qz = 0.
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Running example, IIa

Now consider the following six subsets of H:

X0 := {1, 2, . . . , 15} × {0} × {0}

Y 0 := {0} × {1, 2, . . . , 15} × {0}

Z0 := {0} × {0} × {1, 2, . . . , 15}

X1 := {0} × {1, 2, . . . , 15} × {0}

Y 1 := {0} × {0} × {1, 2, . . . , 15}

Z1 := {1, 2, . . . , 15} × {0} × {0}.

Then (X0, Y 0, Z0) and (X1, Y 1, Z1) satisfy the
simultaneous triple product property.
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Discrete Fourier transform

If H is an abelian group, let Ĥ denote the set of all
homomorphisms from H to S1 aka characters.
Canonical bijection (χ1, χ2) 7→ χ :

χ(h1, h2) = χ1(h1)χ2(h2).

There is a left action of Symn on the set Ĥn:

σ · (χ1, χ2, . . . , χn) :=(χσ−1(1), χσ−1(2), . . . , χσ−1(n)).

Denote by Ξ(Hn) a subset of Ĥn containing exactly
one representative of each orbit of the Symn action
on Ĥn. Note |Ξ(Hn)| =

(|H|+n−1
n

)
.
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Running example, III

A character χ of the group H = (ZZ/16ZZ)3 is
uniquely determined by a triple (a1, a2, a3) of integers
modulo 16. For an element h = (b1, b2, b3) ∈ H,

χ(h) = e2πi(a1b1+a2b2+a3b3)/16.

A character of the group H2 may be represented as(
a11 a12 a13

a21 a22 a23

)

as before. The group Sym2 = {±1} acts on Ĥ2 by
exchanging the two rows of such a matrix. The set
Ξ(H2) has cardinality

(4096
2

)
+ 4096 = 8,390,656.
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Abelian STP families

An abelian STP family with growth parameters (α, β)
is a collection of ordered triples (HN , ΥN , kN),
satisfying

1. HN is an abelian group.

2. ΥN = {(Xi, Yi, Zi) : i = 1, 2, . . . , N} is a
collection of N ordered triples of subsets of HN

satisfying the simultaneous triple product property.

3. |HN | = Nα+o(1).

4. kN =
∏N

i=1 |Xi| =
∏N

i=1 |Yi| =
∏N

i=1 |Zi| =

NβN+o(N).
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Remark

If {(HN , ΥN , kN)} is an abelian STP family, then
Lemma above ensures that there is a 1-1 mapping
(

N∏

i=1

Xi

)
×

(
N∏

i=1

Yi

)
× (SymN)2 → HN o SymN

given by (x, y, σ, τ ) 7→ (xσ)−1yτ . This implies also

|HN |NN ! ≥ (kNN !)2

NαN+o(N)NN+o(N) ≥ N2βN+o(N)N2N+o(N)

α + 1 ≥ 2β + 2

α − 1

β
≥

α + 1

β + 1
≥ 2.
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Running example, IV

Extend our example to an abelian STP family. For
N ≥ 1 let ` = dlog2(N)e and let HN = H`. For
1 ≤ i ≤ N let i1, i2, . . . , i` denote the binary digits of
the number i − 1 (padded with initial 0’s so that it has
exactly ` digits) and let

Xi =
∏̀

m=1

X̄im
, Yi =

∏̀

m=1

Ȳim
, Zi =

∏̀

m=1

Z̄im
.

The triples (Xi, Yi, Zi) satisfy the simultaneous triple
product property.
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Running example, IV

Growth parameters of this abelian STP family.

|HN |=|H|`=(163)1+blog2(N)c=N3 log2(16)+O(1/ log N),

hence α = 3 log2(16) = 12. Also,

kN =
N∏

i=1

|Xi|=
N∏

i=1

∏̀

m=1

|X̄im
|=15N`

= 15N log2(N)+O(N)=NN log2(15)+O(N/ log N),

hence β = log2(15).
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Abelian STP algorithms

• The non-abelian group used in the algorithm is a
wreath product of HN with the symmetric group
SN .

• The mapping from C[G] to a product of matrix
algebras, in the Wedderburn thm, is computed by
applying N ! copies of FFT of HN , in parallel.

• The three subsets satisfying the triple product
property are defined using the sets Xi, Yi, Zi.

• The resulting algorithm has running time
O(n(α−1)/β+o(1)).

Fast and stable matrix multiplication – p.31/44



Algorithm

• Embedding (NO ARITHMETIC): Compute the
following pair of vectors in C[H o SymN ].

a =
∑

x∈X

∑

y∈Y

Axyex−1y

b =
∑

y∈Y

∑

z∈Z

Byzey−1z.
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Algorithm

• Fourier transform (ARITHMETIC): Compute the
following pair of vectors in C[ĤN

o SymN ].

â =
∑

χ∈ĤN

∑

σ∈SymN


 ∑

h∈HN

χ(h)aσh


 eχ,σ.

b̂ =
∑

χ∈ĤN

∑

σ∈SymN


 ∑

h∈HN

χ(h)bσh


 eχ,σ.
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Algorithm

• Assemble matrices (NO ARITHMETIC): For every
χ ∈ Ξ(HN), compute the following pair of matrices
Aχ, Bχ, whose rows and columns are indexed by
elements of SymN .

Aχ
ρσ = âρ·χ,σρ−1

Bχ
στ = b̂σ·χ,τσ−1

Fast and stable matrix multiplication – p.34/44



Algorithm

• Multiply matrices (ARITHMETIC): For every χ ∈

Ξ(HN), compute the matrix product Cχ = AχBχ by

recursively applying the abelian STP algorithm.
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Algorithm

• Disassemble matrices (NO ARITHMETIC):
Compute a vector
ĉ =

∑
χ,σ ĉχ,σeχ,σ ∈ C[ĤN

o SymN ] whose
components ĉχ,σ are defined as follows.
Given χ, σ, let χ0 ∈ Ξ(HN) and τ ∈ SymN be such
that χ = τ · χ0. Let

ĉχ,σ := Cχ0

τ,στ .
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Algorithm

• Inverse Fourier transform (ARITHMETIC):
Compute the following vector c ∈ C[H o SymN ].

c =
∑

h∈HN

∑

σ∈SymN


 1

|H|N

∑

χ∈ĤN

χ(−h)ĉχ,σ


 eσh.

• Output (NO ARITHMETIC): Output the matrix
C = (Cxz) whose entries are given by the formula

Cxz = cx−1z.
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Running example, V

In our example with H = (ZZ/16ZZ)3 and N = 2, we
have kNN ! = (152)(2!) = 450, so the seven steps
above constitute a reduction from 450-by-450 matrix
multiplication to |Ξ(H2)| 2-by-2 matrix multiplication
problems. Recall that |Ξ(H2)| = 8,390,656.

By comparison, the naive reduction from 450-by-450
to 2-by-2 matrix multiplication — by partitioning each
matrix into (225)2 square blocks of size 2-by-2 —
would require the algorithm to compute
(225)3 = 11,390,625 smaller matrix products.

Using this for recurrence gives running time O(n2.95).
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Running example, V

Instead, if we use the N = 2, H = (ZZ/16ZZ)3 con-

struction as the basis of an abelian STP family, we

may apply the abelian STP algorithm which uses a

more sophisticated recursion as the size of the matri-

ces grows to infinity. For example, when N = 2`, we

have n = kNN ! = 15N`(2`)!. matrix multiplications.

As N ! = O(n0.21), the resulting running time can be

shown to be O(n2.81).
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Highlight I

Theorem. If {(HN , ΥN , kN)} is an abelian STP
family with growth parameters (α, β), then the
corresponding abelian STP algorithm is stable. It
satisfies the error bound

‖Ccomp − C‖F ≤ µ(n)ε‖A‖F · ‖B‖F + O(ε2),

with the Frobenius norm ‖ · ‖F and the function µ of
order

µ(n) = n
α+2
2β

+ o(1).
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Highlight II

Let ω be the exponent of matrix multiplication.

Theorem. For every α > 0 there exists an algorithm
for multiplying n×n matrices that performs O(nω+α)
operations and satisfies the bound

‖Ccomp − C‖ ≤ µ(n)ε‖A‖ · ‖B‖ + O(ε2),

with µ(n) = O(nc) for some constant c that depends
on α but not on n.

Remark: It is an open question whether a group-theoretic al-

gorithm can achieve O(nω+α) for arbitrarily small α.
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Result used

Ran Raz
On the complexity

of matrix product

SIAM J. Computing

[2003].

Theorem. The exponent of
matrix multiplication is achiev-
able by bilinear noncommu-
tative algorithms. More pre-
cisely, for every arithmetic cir-
cuit of size S which computes
the product of two matrices
A, B over a field with char-
acteristic zero, there is a bi-
linear circuit of size O(S) that
also computes the product of
A and B.
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Tradeoff between n and ε

All our bounds are of the form

‖Ccomp − C‖ ≤ µ(n)ε‖A‖ · ‖B‖ + O(ε2), (∗)

µ(n) = O(nc) for some constant c ≥ 1.

As µ(n)ε � 1, the number b of bits to represent
fractional part of floating point numbers satisfies
b = log2(1/ε) ≥ log2 n.

Multiplying the number of bits by a factor f raises
the cost of an algorithm by O(f 1+o(1)) using
Schönhage-Strassen [1971].

All algorithms satisfying (∗) are in fact O(·)-equivalent.
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