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The quest for speed

ow fast can one multiply two n Xn matrices?

» Standard multiplication: O(n?>) operations.
» Strassen'’s algorithm: O(n?-®') operations.

» Coppersmith and Winograd's algorithm: O (n2-38)
operations.

* Is O(n?) achievable?
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Why should we care?

omplexity of matrix multiplication = complexity of
“almost all” matrix problems:

* solving linear systems,

* evaluating determinants,
e LU factorization,

°* many more.

See P. Burgisser, M. Clausen, M. A. Shokrollahi
Algebraic complexity theory.
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Strassen’s algorithm

Main idea:

» Multiplication by recursively
partitioning into smaller
blocks.

* To be faster than O(n?),
this needs a method to
Gaussian elimination multiply small matrices

I 3
is not optimal. Numer. (ord_er k) using o(k?)
Mathematik [1969]. multiplications.

Volker Strassen
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Strassen

Bq- ] requires only
B

7 multiplications:

- Ago)(B11 + Ba2)

- A22)Bll

A11(B12 — Ba22)
Ass(Ba1 — Byq)

(A1;

A12)B22

(A21 — All)(Bll T B12)
(A12 — A22)(B21 T B22)°
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Strassen

[ Cll Cl2 ]
C21 CZ2 ’

— Mo + M3 + M.

Applied recursively, this vyields running time
O(,nlog2 7) ~ 0(?’1,2'8).
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Coppersmith and Winograd

e

Don Coppersmith Shmuel Winograd

Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation [1990].

Used a thm on dense sets of integers containing no three
terms in arithmetic progression (R. Salem & D. C. Spencer
[1942]) to get an algorithm with running time ~ O (n?37%).
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Group-theoretic approach

Chris Umans Henry Cohn

A group-theoretic approach to matrix multiplication, FOCS
Proceedings [2003].

Proposed embedding into group algebra to be
combined with recursive partitioning.
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Why group algebras?

ultiplying two polynomials has complexity
O(n log n) instead of O(n?) by embedding
coefficients into C[G] where G is a finite
cyclic group of order N > 2n, via the map

p— {p(w) : w = exp(27ki/N) }k=o0,.... N—1-

embed convolve extract
into C[G] using FFT from C[G] |

The same can be done with matrix products,
viathe map A +— 3 A(x,y)x~'y. The group

G must have special properties.
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The algorithm

Embed A, B in group algebra

* Perform FFT

» Reorganize results into new matrices
* Multiply new matrices recursively

» Reorganize results into new matrices
* Perform Inverse FFT

» Extract C = AB from group algebra
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Properties required

"« For unambiguous embedding into C|G] there
must be three subgroups H,, Hs, H3 with the
triple product property

hihohs = ]_,hz e HB — hy =hy=hg=1
(can be generalized to other subsets of GG).

» For the resulting algorithm to be faster than
O(n?), we must beat the sum of the cubes:

|Hq| |H2| [Hs| > ) d?

(d; are the character degrees of G).
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Wedderburn’s theorem

heorem. The group algebra of a finite group G
decomposes as the direct product

@[G] Y ®d1Xd1 X oeos X @dedk

of matrix algebras of orders d4, ..., d;. These orders
are the character degrees of G, or the dimensions of
its irreducible representations.
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Beating the sum of the cubes

Baldzs Szegedy Henry Cohn Chris Umans  Bobby Kleinberg

Group-theoretic algorithms for matrix multiplication,
FOCS Proceedings [2005].

Found groups with subsets beating the sum of
the cubes and satisfying the triple product property.

Press coverage: SIAM News [Nov 2005] by Sara Robinson.
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Error analysis

Jim Demmel loana Dumitriu Olga Holtz Bobby Kleinberg

Fast matrix multiplication is stable, ArXiv Math.NA/0603207
[20006].

Main question: Do you get the right answer in the
presence of roundoff? To answer, need error analysis
for a large class of recursive matrix multiplication
algorithms.
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orward error analysis in the spirit of

D. Bini and G. Lotti Stability of fast algorithms for matrix
multiplication, Numer. Mathematik [1980/81].

What was missing:

* More general roundoff assumptions
* Wider scope:

nonstationary algorithms
algorithms with pre- and post- processing
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Recursive matmul algorithms

aka Bilinear noncommutative algorithms

» Stationary partitioning algorithms: at each step,

split matrices into the same number k2 of square
blocks.

» Non-stationary partitioning algorithms: the number
of blocks may vary at each step.

e Partitioning may be combined with pre- and
post-processing, both linear maps that introduce
roundoff errors.
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Error bounds

all cases, the error bounds have the form
|Ceomp — C|| < cne||A|| - || B]| + O(g?),

where c,d are modest constants,

g machine precision,
n orderof A, B, C = AB,
Ceomp computed value of C.

Cf. with error bound for n3-algorithm:
Ceomp — C| < cnelA| - |B| + O(e?).
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Group-theoretic algorithms

Embed A, B in group algebra (exact)

* Perform FFT (roundoff)

* Reorganize results into new matrices (exact)
* Multiply new matrices recursively (roundoff)
» Reorganize results into new matrices (exact)
» Perform Inverse FFT (roundoff)

» Extract C' = AB from group algebra (exact)
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Semi-direct product, wreath product

If H is any group and Q is a group which acts (on the
left) by automorphisms of H, with g - h denoting the
actionof g € Q on h € H, then the semidirect
product H x Q is the set of ordered pairs (h, q) with
the multiplication law

(h1,q1)(h2,q2) = (h1(q:1 - h2), q1q2).

If H Is any group, S is any finite set, and Q Is a group
with a left action on S, the wreath product H @ @Q Is the
semidirect product (H®) x Q where Q acts on the
direct product of |.S| copies of H by permuting the
coordinates according to the action of Q on S.
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Running example, |

onsider the set S = {0, 1} and a two-element group
() whose non-identity element acts on S by swapping

0 and 1. Let H be the group (7ZZ/16)®. An element of
H?" is an ordered pair of elements of H:

( o0 Lo1 <Lo2 )

Ti0 T11 T12 )

An element of H @ Q is an ordered pair (X, q) where
X Is a matrix as above, and ¢ = +1. Example:

(X,—-1) Too + Y10 To1 T Y11 To2 T Y12 "
T ’
(Y, —1) 10 + Yoo T11 + Yo1 T12 + Yo2
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Triple product property

If S, T are subsets of a group G, let Q(S, T') denote
their right quotient set:

Q(S,T) := {st™':s€8,tcT},
Q(S) = Q(S,9).

Definition. If H is a group and X, Y, Z are three
subsets, we say X, Y, Z satisfy the triple product

property if, for all g, € Q(X), g, € Q(Y),
q. € Q(Z), the condition q.q,q. = 1 implies

QmZQyZQZ:L
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Simultaneous triple product property

- T {(X;,Y;,Z;) : @ € I}is a collection of ordered
triples of subsets of H, we say that this collection
satisfies the simultaneous triple product property
(STPP) if, forall 2, 3,k € I and all g, € Q(X;, X),
qy € Q(Y?v Yk)1 q- € Q(Zka Z’i)a the condition
d-9,9. = 1 implies g,=q,=q.=1 and 1=j3=k.

Lemma If a group H has subsets { X;,Y;, Z; }1<i<n
satisfying the simultaneous triple product property,
then for every element hw in H { Sym,, there is at
most one way to represent hr as a quotient

(ko) 'yrsuchthatx € [[;_, Xi, vy € [[;., Ys,

o, T € Sym,, .
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Running example, Il

In our running example, the group H is (ZZ/167Z)3.
Consider the following three subgroups of H.

X (722/167Z) x {0} x {0}
Y := {0} x (ZZ/167ZZ) x {0}
Z = {0} x {0} x (ZZ/167ZZ2)

Then X, Y, Z satisfy the triple product property: if g, €

Q(X)a qy € Q(Y)7Qz S Q(Z)a and Qe t+qy+9g-> = 0,
then g, = dy — 4= — 0.
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Running example, lla

Now consider the following six subsets of H:

{1,2,...,15} x {0} x {0}
{0} x {1,2,...,15} x {0}
{0} x {0} x {1,2,...,15}
{0} x {1,2,...,15} x {0}
{0} x {0} x {1,2,...,15}
{1,2,...,15} x {0} x {0}.

Then (Xg,Y o, Zy) and (X,Y 1, Z,) satisfy the
simultaneous triple product property.

Xo
Yo
Zy
X
Y,
Z,
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Discrete Fourier transform

If H is an abelian group, let H denote the set of all

homomorphisms from H to S*! aka characters.
Canonical bijection (x1, x2) — X :

X (h1, h2) = x1(h1)x2(h2).
There Is a left action of Sym,, on the set H™
o (X15X25+++ 5 Xn) 7 =(Xo-1(1)» Xo—1(2)1+ * + » Xo—1(n))-

Denote by E(H™) a subset of H™ containing exactly
one representative of each orbit of the Sym,_, action

on H™. Note |[E(H™)| = (Flt™=1).
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Running example, Il

A character x of the group H = (ZZ/167Z)° is

uniquely determined by a triple (a1, as, ag) of integers

modulo 16. For an element h = (b1, b2, b3) € H,
X(h) — eZﬂi(a1b1+a2b2+a3b3)/16.

A character of the group H? may be represented as
aijx a2 ais
( az1 Q22 0az3 )
as before. The group Sym, = {£1} acts on H? by

exchanging the two rows of such a matrix. The set

=(H?) has cardinality (*,°) 4 4096 = 8,390,656.
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Abelian STP families

An abelian STP family with growth parameters (a, 3)
IS a collection of ordered triples (Hn, YN, kN),
satisfying

1. Hp Is an abelian group.

2. YN = {(Xz,}/z,Zz) 2 1= 1,2,...,N} IS a
collection of NV ordered triples of subsets of H
satisfying the simultaneous triple product property.

3. |Hn| = Noto),

N N N
4. kny = 1,21 [ X = 1121 1Yil = 1121 | Za] =
NBN+o(N)
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Remark

{(Hn, YN, kn)} is an abelian STP family, then
Lemma above ensures that there is a 1-1 mapping

(H X,,;) X (H Yi) X (Symp)? — Hn 1 Symp

1=1

given by (x,y, o, 7) — (xo) " ly7. This implies also

| Hn|VYN! > (EnN!)?
NaN—I—o(N)NN—I—o(N) Z N2,8N—|—0(N)N2N—|—0(N)
at+1l > 2842
oa—1 o+ 1
> > 2
B g+1
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Running example, IV

Extend our example to an abelian STP family. For

N > 1let£ = [log,(N)] and let Hy = H*. For

1 <1< Nleti,122,...,1, denote the binary digits of
the number i — 1 (padded with initial 0’s so that it has
exactly £ digits) and let

£ £ £
X; = H X’ima Y; = H Ema Z; = H Z’im°
m=1 m=1 m=1

The triples (X;, Y;, Z;) satisfy the simultaneous triple
product property.
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Running example, IV

rowth parameters of this abelian STP family.
|HN|=|H|£:(163)1+ [loga(IN)] — p\y31082(16)+0(1/ log N),
hence a = 3log,(16) = 12. Also,

HIX I—H H | X, =157

=1 m=1

— ]_5N log2(N)—|—O(N):NN log,(15)+O(N/ log N),

kn

hence 3 = log,(15).
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Abelian STP algorithms

The non-abelian group used in the algorithm is a

wreath product of H n with the symmetric group
SN

The mapping from C|G] to a product of matrix
algebras, in the Wedderburn thm, is computed by
applying IN! copies of FFT of Hpy, In parallel.

The three subsets satisfying the triple product
property are defined using the sets X;, Y;, Z;.

* The resulting algorithm has running time
O (n(@—1/B+o(1)y,
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Algorithm

Embedding (NO ARITHMETIC): Compute the
following pair of vectors in C[H @ Sym p;].

a — >4 >4 Awyew_ly
xecX yeyYy

b = S: S:Byzey_lz.

yeyY ze€Z
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Algorithm

Fourier transform (ARITHMETIC): Compute the
following pair of vectors in C[HY x Sym].

a Z Z Z xX(h)ash | €x,o-

XEf‘I\N occSymy \heHN

Z Z Z X(h)bah ex,a'-

xEHN c€Symy \he HN

oo
|
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Algorithm

Assemble matrices (NO ARITHMETIC): For every

x € Z(H?Y), compute the following pair of matrices
AX, BX whose rows and columns are indexed by
elements of Sym ;.

X _ A

A% Ap.x,o0p—1
x . A

BO“T T bO"X,TO'_l
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Algorithm

Multiply matrices (ARITHMETIC). For every x €
=(H?Y), compute the matrix product CX = AXBX by
recursively applying the abelian STP algorithm.
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Algorithm

Disassemble matrices (NO ARITHMETIC):
Compute a vector

&= oCxolx,c € C[HY x Symy] whose
components ¢, », are defined as follows.

Given x, o, let xo € Z(HY) and 7 € Sym, be such
that x = 7 - xo. Let

- .— (X0
Cx,o = CT,O'T'
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Algorithm

Inverse Fourier transform (ARITHMETIC):
Compute the following vector ¢ € C[H @ Sym p;].

1
c = Z Z W Z X(—h)Cy,0 | €oh-

heHN o&€Symy; XEf‘I\N

e Output (NO ARITHMETIC): Output the matrix
C = (C,.) whose entries are given by the formula

sz — C:B_1Z'
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Running example, V

- Inour example with H = (ZZ/16ZZ)® and N = 2, we
have kx N! = (15%)(2!) = 450, so the seven steps
above constitute a reduction from 450-by-450 matrix
multiplication to |=(H?)| 2-by-2 matrix multiplication
problems. Recall that |[Z(H?)| = 8,390,656.

By comparison, the naive reduction from 450-by-450
to 2-by-2 matrix multiplication — by partitioning each
matrix into (225)? square blocks of size 2-by-2 —
would require the algorithm to compute

(225)% = 11,390,625 smaller matrix products.

Using this for recurrence gives running time O (n?-%°).
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Running example, V

Instead, if we use the N = 2, H = (ZZ/167Z)? con-
struction as the basis of an abelian STP family, we

may apply the abelian STP algorithm which uses a
more sophisticated recursion as the size of the matri-
ces grows to infinity. For example, when N = 2%, we
have n = kxIN! = 15V¢(2%)!. matrix multiplications.
As N! = O(n%?1), the resulting running time can be
shown to be O(n?3%1).
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Highlight |

heorem. If {(Hx, YN, kn)} is an abelian STP
family with growth parameters («, 3), then the
corresponding abelian STP algorithm is stable. It
satisfies the error bound

|Ceomp — Cllr < u(n)el|Allr - [| Bllr + O(e?),

with the Frobenius norm || - || 7 and the function g of
order
“(’n) — na2_|£_32 +O(1).
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Highlight I

et w be the exponent of matrix multiplication.

Theorem. For every a > 0 there exists an algorithm

for multiplying n x n matrices that performs O(n“+<)
operations and satisfies the bound

[Ceomp — Cll < p(n)el|A|l - | B]| + O(e?),

with pu(n) = O(n°) for some constant c that depends
on « but not on n.

Remark: It is an open question whether a group-theoretic al-

gorithm can achieve O(n“1%) for arbitrarily small .
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Result used

Theorem. The exponent of
matrix multiplication is achiev-
able by bilinear noncommu-
tative algorithms. More pre-
cisely, for every arithmetic cir-
cuit of size S which computes

Ran Raz the product of two matrices

On the complexity A, B over a field with char-

of matrix product acteristic zero, there is a bi-

SIAM J. Computing linear circuit of size O(.S) that

[2003]. also computes the product of
A and B.
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Tradeoff between n and e

Il our bounds are of the form
|Ceomp — C|| < u(n)e||A|l - ||B|| + O(e?), ()

p(n) = O(n°) for some constant ¢ > 1.

As pu(n)e < 1, the number b of bits to represent
fractional part of floating point numbers satisfies
b =log,(1/e) > log, n.

Multiplying the number of bits by a factor f raises

the cost of an algorithm by O(f*°1)) using
Schonhage-Strassen [1971].

All algorithms satisfying () are in fact O(-)-equivalent.
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